留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于PD-FEM混合模型的材料热力耦合损伤分析

曾金宝 姜翠香 张益豪

曾金宝, 姜翠香, 张益豪. 基于PD-FEM混合模型的材料热力耦合损伤分析[J]. 应用数学和力学, 2024, 45(10): 1345-1358. doi: 10.21656/1000-0887.450006
引用本文: 曾金宝, 姜翠香, 张益豪. 基于PD-FEM混合模型的材料热力耦合损伤分析[J]. 应用数学和力学, 2024, 45(10): 1345-1358. doi: 10.21656/1000-0887.450006
ZENG Jinbao, JIANG Cuixiang, ZHANG Yihao. Thermal-Mechanical Coupling Damage Analysis of Material Based on PD-FEM Hybrid Model[J]. Applied Mathematics and Mechanics, 2024, 45(10): 1345-1358. doi: 10.21656/1000-0887.450006
Citation: ZENG Jinbao, JIANG Cuixiang, ZHANG Yihao. Thermal-Mechanical Coupling Damage Analysis of Material Based on PD-FEM Hybrid Model[J]. Applied Mathematics and Mechanics, 2024, 45(10): 1345-1358. doi: 10.21656/1000-0887.450006

基于PD-FEM混合模型的材料热力耦合损伤分析

doi: 10.21656/1000-0887.450006
详细信息
    作者简介:

    曾金宝(1995—),男,硕士生(E-mail: [email protected])

    通讯作者:

    姜翠香(1967—),女,博士,硕士生导师(通讯作者. E-mail: [email protected])

  • 中图分类号: O346.1

Thermal-Mechanical Coupling Damage Analysis of Material Based on PD-FEM Hybrid Model

  • 摘要: 提出了一种新的近场动力学-有限元方法(peridynamics-finite element method,PD-FEM)混合模型. 该模型用于求解材料热力耦合损伤问题,将求解域划分为近场动力学(PD)区域和有限元方法(FEM)区域,通过FEM节点与PD物质点构成的混合键连接各个子区域. 采用该模型对氧化铝陶瓷板在热冲击载荷作用下的损伤行为进行了模拟分析,计算结果表明,采用该混合模型获得的裂纹萌生及扩展与实验研究结果吻合良好,验证了该模型的正确性. 该PD-FEM混合模型继承了PD处理不连续问题的优势,同时,由于FEM的引入,大大提高了PD方法在研究材料热力耦合损伤问题时的求解效率.
  • 图  1  PD-FEM混合模型示意图

    Figure  1.  Schematic diagram of the PD-FEM hybrid model

    图  2  局部坐标系中物质点对之间的相互作用

    Figure  2.  The interaction between material points in local coordinates

    图  3  陶瓷板冷却PD-FEM混合模型模拟分析示意图

    Figure  3.  Schematic diagram of the PD-FEM hybrid simulation model for ceramic plates cooling

    图  4  解析解与PD-FEM模型结果对比

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  4.  Comparison of the analytical solution and the PD-FEM model results

    图  5  PD-FEM模型的相对误差和PD热力耦合模型的相对误差对比

    Figure  5.  Comparison of the PD-FEM model relative errors and the PD thermo-mechanical coupling model relative errors

    图  6  PD-FEM计算模型示意图

    Figure  6.  Schematic diagram of the PD-FEM calculation model

    图  7  陶瓷板水平中线位移和温度响应

    Figure  7.  Displacement and temperature responses along the horizontal axis of ceramic plates

    图  8  陶瓷板淬火PD-FEM混合模型模拟分析示意图

    Figure  8.  Schematic diagram of the PD-FEM hybrid simulation model for ceramic plates quenching

    图  9  PD-FEM混合模型与PD热力模型裂纹扩展结果对比

    Figure  9.  Comparison of crack propagation results between the PD-FEM hybrid model and the PD thermo-mechanical coupling model

    图  10  不同初始温度和宽度的陶瓷板淬火实验结果[28]

    Figure  10.  Quenching experiment results of ceramic plates with different initial temperatures and widths[28]

    图  11  不同初始温度和宽度的PD-FEM模型裂纹扩展结果

    Figure  11.  Crack propagation results of PD-FEM models with different initial temperatures and widths

    图  12  PD-FEM模型结果与实验结果[28]对比

    Figure  12.  Comparison of PD-FEM models results and experimental results[28]

    图  13  陶瓷板竖直中线应变能密度分布

    Figure  13.  Strain energy density distributions along the vertical axis of ceramic plates

    表  1  Al2O3陶瓷板材料参数[28]

    Table  1.   Material parameters of the Al2O3 ceramic plate[28]

    material parameter value
    elastic modulus E/GPa 370
    Poisson’s ratio υ 1/3
    density ρ/(kg/m3) 3 960
    fracture energy release rate G0/(J/m2) 24.3
    thermal expansion α/K-1 6.8×10-6
    heat capacity cv/(J/(kg·K)) 880
    thermal conductivity k/(W/(m·K)) 20
    下载: 导出CSV
  • [1] 赵婷婷, 范立坤, 黎阳. 陶瓷材料抗热震性的研究进展[J]. 机械工程材料, 2022, 46(12): 1-8. doi: 10.11973/jxgccl202212001

    ZHAO Tingting, FAN Likun, LI Yang. Research progress on thermal shock resistance of ceramic materials[J]. Materials for Mechanical Engineering, 2022, 46(12): 1-8. (in Chinese) doi: 10.11973/jxgccl202212001
    [2] 李鸿鹏, 凌松, 戚振彪, 等. 热力耦合问题数学均匀化方法的计算精度[J]. 应用数学和力学, 2020, 41(1): 54-69. doi: 10.21656/1000-0887.400119

    LI Hongpeng, LING Song, QI Zhenbiao, et al. Accuracy of the mathematical homogenization method for thermomechanical problems[J]. Applied Mathematics and Mechanics, 2020, 41(1): 54-69. (in Chinese) doi: 10.21656/1000-0887.400119
    [3] 李若愚, 王天宏. 薄板热力耦合的屈曲分析[J]. 应用数学和力学, 2020, 41(8): 877-886. doi: 10.21656/1000-0887.400308

    LI Ruoyu, WANG Tianhong. Thermo-mechanical buckling analysis of thin plates[J]. Applied Mathematics and Mechanics, 2020, 41(8): 877-886. (in Chinese) doi: 10.21656/1000-0887.400308
    [4] 杨国欣, 郑世风, 李定玉, 等. 考虑损伤判据温度相关性的相场法模拟氧化铝热冲击裂纹扩展[J]. 应用数学和力学, 2022, 43(11): 1259-1267.

    YANG Guoxin, ZHENG Shifeng, LI Dingyu, et al. Thermal shock crack propagation of alumina simulated with the phase-field method under temperature-dependent damage criteria[J]. Applied Mathematics and Mechanics, 2022, 43(11): 1259-1267. (in Chinese)
    [5] 马玉娥, 陈鹏程, 郭雯, 等. 基于光滑有限元法的热-弹相场断裂研究[J]. 固体力学学报, 2023, 44(3): 346-354.

    MA Yu'e, CHEN Pengcheng, GUO Wen, et al. Stady on thermo-elastic phase fracture modeling based on the cell-based smoothed finite element method[J]. Chinese Journal of Solid Mechanics, 2023, 44(3): 346-354. (in Chinese)
    [6] SILLING S A. Reformulation of elasticity theory for discontinuities and long-range forces[J]. Journal of Mechanics Physics of Solids, 2000, 48(1): 175-209. doi: 10.1016/S0022-5096(99)00029-0
    [7] SILLING S A. Linearized theory of peridynamic states[J]. Journal of Elasticity, 2010, 99(1): 85-111. doi: 10.1007/s10659-009-9234-0
    [8] SILLING S A, EPTON M, WECKNER O. Peridynamic states and constitutive modeling[J]. Journal of Elasticity, 2007, 88(2): 151-184. doi: 10.1007/s10659-007-9125-1
    [9] BOBARU F, DUANGPANYA M. A peridynamic formulation for transient heat conduction in bodies with evolving discontinuities[J]. Journal of Computational Physics, 2012, 231(7): 2764-2785. doi: 10.1016/j.jcp.2011.12.017
    [10] BOBARU F, DUANGPANYA M. The peridynamic formulation for transient heat conduction[J]. International Journal of Heat and Mass Transfer, 2010, 53(19/20): 4047-4059.
    [11] OTERKUS S, MADENCI E, AGWAI A. Fully coupled peridynamic thermomechanics[J]. Journal of the Mechanics and Physics of Solids, 2014, 64: 1-23. doi: 10.1016/j.jmps.2013.10.011
    [12] D'ANTUONO P, MORANDINI M. Thermal shock response via weakly coupled peridynamic thermo-mechanics[J]. International Journal of Solids and Structures, 2017, 129: 74-89. doi: 10.1016/j.ijsolstr.2017.09.010
    [13] WANG Y T, ZHOU X P, ZHANG T. Size effect of thermal shock crack patterns in ceramics: insights from a nonlocal numerical approach[J]. Mechanics of Materials, 2019, 137: 103133. doi: 10.1016/j.mechmat.2019.103133
    [14] GAO Y, OTERKUS S. Ordinary state-based peridynamic modelling for fully coupled thermoelastic problems[J]. Continuum Mechanics and Thermodynamics, 2019, 31: 907-973. doi: 10.1007/s00161-018-0691-1
    [15] WANG Y T, ZHOU X P, ZHANG T. An improved coupled thermo-mechanic bond-based peridynamic model for cracking behaviors in brittle solids subjected to thermal shocks[J]. European Journal of Mechanics A: Solids, 2019, 73: 282-305. doi: 10.1016/j.euromechsol.2018.09.007
    [16] 李星, 顾鑫, 夏晓舟, 等. 考虑相变的近场动力学热-力耦合模型及多孔介质冻结破坏模拟[J]. 力学学报, 2022, 54(12): 3310-3318. doi: 10.6052/0459-1879-22-521

    LI Xing, GU Xin, XIA Xiaozhou, et al. Peridynamic thermomechanical coupling model with phase change and simulation of freezing failure of porous media[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(12): 3310-3318. (in Chinese) doi: 10.6052/0459-1879-22-521
    [17] KILIC B, MADENCI E. Coupling of peridynamic theory and the finite element method[J]. Journal of Mechanics and Structures, 2010, 5(5): 707-733. doi: 10.2140/jomms.2010.5.707
    [18] LIU W Y, HONG J W. A coupling approach of discretized peridynamics with finite element method[J]. Commuter Methods in Applied Mechanics and Engineering, 2012, 245: 163-175.
    [19] SELESON P, BENDDINE S, PRUDHOMME S. A force-based coupling scheme for peridynamics and classical elasticity[J]. Computational Materials Science, 2013, 66: 34-49. doi: 10.1016/j.commatsci.2012.05.016
    [20] BIE Y H, CUI X Y, LI Z C. A coupling approach of state-based peridynamics with node-based smoothed finite element method[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 331: 675-700. doi: 10.1016/j.cma.2017.11.022
    [21] BIE Y H, LIU Z M, YANG H, et al. Abaqus implementation of dual peridynamics for brittle fracture[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 372: 113398. doi: 10.1016/j.cma.2020.113398
    [22] 章青, 郁杨天, 顾鑫. 近场动力学与有限元的混合建模方法[J]. 计算力学学报, 2016, 33(4): 441-448.

    ZHANG Qing, YU Yangtian, GU Xin. Hybrid modeling methods of peridynamics and finite element method[J]. Chinese Journal of Computational Mechanics, 2016, 33(4): 441-448. (in Chinese)
    [23] 史鑫, 赵剑宁, 杨苗苗, 等. 含高温度梯度及接触热阻非线性热力耦合问题的谱元法[J]. 力学学报, 2022, 54(7): 1960-1969.

    SHI Xin, ZHAO Jianning, YANG Miaomiao, et al. Spectral element method for nonlinear thermomechanical coupling problems with high temperature gradient and thermal contact resistance[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(7): 1960-1969. (in Chinese)
    [24] 孔祥谦. 热应力有限单元法分析[M]. 上海: 上海交通大学出版社, 1999.

    KONG Xiangqian. Thermal Stress Analysis by Finite Element Method[M]. Shanghai: Shanghai Jiao Tong University Press, 1999. (in Chinese)
    [25] 王勖成. 有限单元法[M]. 北京: 清华大学出版社, 2003.

    WANG Maocheng. Finite Element Method[M]. Beijing: Tsinghua University Press, 2003. (in Chinese)
    [26] MADENCI E, OTERKUS E. Peridynamic Theory and Its Applications[M]. New York: Springer, 2014.
    [27] WANG Y T, ZHOU X P, KOU M M. A coupled thermo-mechanical bond-based peridynamics for simulating thermal cracking in rocks[J]. International Journal of Fracture, 2018, 211: 13-42. doi: 10.1007/s10704-018-0273-z
    [28] SHAO Y F, LIU B Y, WANG X H, et al. Crack propagation speed in ceramic during quenching[J]. Journal of the European Ceramic Society, 2018, 38: 2879-2885. doi: 10.1016/j.jeurceramsoc.2018.02.028
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  90
  • HTML全文浏览量:  26
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-08
  • 修回日期:  2024-03-01
  • 刊出日期:  2024-10-01

目录

    /

    返回文章
    返回