Ferroelectric Peak Behaviors of Perovskite Materials Under Ultra-High Pressure
-
摘要: 压力能够显著影响钙钛矿铁电材料的晶体结构和功能特性, 且对相变温度的影响相对较小,是能比较有效地改善材料的介电和铁电性质的手段. 该文利用基于第一性原理的分子动力学方法,探究了钛酸钡(BTO)单晶在常压至150 GPa静水压力区间的铁电性演变规律. 结果表明,BTO单晶的铁电性随着压力的增加呈现出非单调的变化趋势,表现为先减弱、后增强,最后完全消失,并在42 GPa处出现峰值现象,其原因是压力导致的原子间距减小影响了长程Coulomb力与短程电子斥力的平衡. 研究揭示的BTO单晶在超高静水压力环境下的铁电性变化规律,为未来钙钛矿材料在器件领域中的应用提供了理论基础,并为实验领域研究BTO铁电性的超高压行为提供了理论指导.Abstract: Pressure has significant influences on the crystal structures and functional properties of perovskite ferroelectric materials, but relatively minor impact on the phase transition temperature, and can serve as an effective means to enhance the dielectric and ferroelectric properties of these materials. Molecular dynamics simulations were conducted based on the first principles to explore the evolution of ferroelectricity in barium titanate (BTO) single crystals subjected to hydrostatic pressures ranging from the atmospheric pressure to 150 GPa. The findings demonstrate that, a non-monotonic trend of the ferroelectricity of BTO occurs with the increase of the pressure. The ferroelectric first weakens, then intensifies, and finally disappears, with a peak at 42 GPa. This behavior can be attributed to the pressure-induced reduction in atomic spacings. This reduction disrupts the delicate balance between long-range Coulomb forces and short-range electron repulsions. The findings elucidate the ferroelectric behavior of BTO single crystals under ultra-high hydrostatic pressure, providing a theoretical foundation for their future applications to devices and offering valuable theoretical guidance for experimental investigations of BTO ferroelectricity under ultra-high pressures.
-
Key words:
- molecular dynamics /
- BaTiO3 /
- ultra-high pressure /
- ferroelectricity
edited-byedited-by1) (我刊青年编委田晓宝来稿) -
表 1 粒子电荷与壳核相互作用参数
Table 1. Particle charges and shell-core interaction parameters
particle C*/|e| S*/|e| K2/(eV·Å-2) K4/(eV·Å-4) Ba2+ 5.62 -3.76 251.8 0.0 Ti4+ 4.76 -1.58 322.0 500.0 O2- 0.91 -2.59 31.0 3 000.0 表 2 短程相互作用势参数
Table 2. Short-range interaction potential parameters
interaction pair Q/eV ρ/Å C/(eV·Å6) Ba2+ —O2- 1 061.30 0.364 0 0.0 Ti4+ —O2- 3 769.93 0.255 8 0.0 O2-—O2- 4 740.00 0.280 9 160.0 -
[1] SAMARA G A. Pressure and temperature dependences of the dielectric properties of the perovskites BaTiO3 and SrTiO3[J]. Physical Review, 1966, 151(2): 378. doi: 10.1103/PhysRev.151.378 [2] 肖长江, 窦志强. 钙钛矿铁电体在超高压下的相变研究进展[J]. 人工晶体学报, 2018, 47(1): 194-199. doi: 10.3969/j.issn.1000-985X.2018.01.032XIAO Changjiang, DOU Zhiqiang. Research progress of phase transition of perovskite ferroelectric under super-high pressure[J]. Journal of Synthetic Crystals, 2018, 47(1): 194-199. (in Chinese) doi: 10.3969/j.issn.1000-985X.2018.01.032 [3] ISHIDATE T, ABE S, TAKAHASHI H. Phase diagram of BaTiO3[J]. Physical Review Letter, 1997, 78(12): 2397-2400. doi: 10.1103/PhysRevLett.78.2397 [4] VENKATESWARAN U D, NAIK V M, NAIK R. High-pressure Raman studies of polycrystalline BaTiO3[J]. Physical Review B, 1998, 58(21): 14256-14260. doi: 10.1103/PhysRevB.58.14256 [5] KORNEV I A, BELLAICHE L, BOUVIER P, et al. Ferroelectricity of perovskites under pressure[J]. Physical Review Letters, 2005, 95(19): 196804. doi: 10.1103/PhysRevLett.95.196804 [6] DUAN Y, TANG G, CHEN C, et al. First-principles investigations of ferroelectricity and piezoelectricity in BaTiO3/PbTiO3 superlattices[J]. Physical Review B, 2012, 85(5): 054108. doi: 10.1103/PhysRevB.85.054108 [7] 黄艳萍, 黄晓丽, 崔田. 原位高压测试技术在高压结构及性质研究中的应用[J]. 物理, 2019, 48(10): 650-661. doi: 10.7693/wl20191004HUANG Yanping, HUANG Xiaoli, CUI Tian. Techniques for in-situ measurement of crystal structure and properties under high pressure[J]. Physics, 2019, 48(10): 650-661. (in Chinese) doi: 10.7693/wl20191004 [8] 周晓玲, 王潘. 高压力学方法及研究进展[J]. 高压物理学报, 2023, 37(5): 3-10.ZHOU Xiaoling, WANG Pan. Methods and research progress in high pressure mechanics[J]. Chinese Journal of High Pressure Physics, 2023, 37(5): 3-10. (in Chinese) [9] ARAB F, KANOUNI F, SERHANE R, et al. Electromechanical sensitivity of ZnO thin films at high-pressure regime for SAW strain sensor applications[J]. Materials Today Communications, 2024, 38: 107719. doi: 10.1016/j.mtcomm.2023.107719 [10] GAO J, XU Z, ZHANG C, et al. Hydrostatic pressure dependence of dielectric, elastic, and piezoelectric properties of Pb(Mg1/3Nb2/3)O3—0.33PbTiO3 ceramic[J]. Journal of the American Ceramic Society, 2011, 94(9): 2946-2950. doi: 10.1111/j.1551-2916.2011.04455.x [11] PENG P, NIE H, GUO W, et al. Pressure-induced ferroelectric-relaxor phase transition in (Bi0.5Na0.5)TiO3-based ceramics[J]. Journal of the American Ceramic Society, 2019, 102(5): 2569-2577. doi: 10.1111/jace.16069 [12] XIE M, NIE H, WANG G, et al. Enhanced pressure-driven force-electric conversion effect for (Pb, La)(Zr, Ti)O3 ferroelectric ceramics[J]. Journal of the American Ceramic Society, 2022, 105(2): 1210-1219. doi: 10.1111/jace.18164 [13] TANG M, HU L, WU Y, et al. Electromechanical properties of[001]-textured Mn-PMN-PZT ceramics under hydrostatic pressure[J]. Journal of the American Ceramic Society, 2024, 107(2): 1042-1051. doi: 10.1111/jace.19501 [14] CHEN Y, WANG H, LOU X, et al. Vortex domain structures induced by strain gradient reduce ferroelectric brittleness[J]. Acta Mechanica Sinica, 2023, 39(5): 422428. doi: 10.1007/s10409-023-22428-x [15] SEPLIARSKY M, ASTHAGIRI A, PHILLPOT S R, et al. Atomic-level simulation of ferroelectricity in oxide materials[J]. Current Opinion in Solid State and Materials Science, 2005, 9(3): 107-113. doi: 10.1016/j.cossms.2006.05.002 [16] TINTE S, STACHIOTTI M G, SEPLIARSKY M, et al. Atomistic modelling of BaTiO3 based on first-principles calculations[J]. Journal of Physics: Condensed Matter, 1999, 11(48): 9679-9690. doi: 10.1088/0953-8984/11/48/325 [17] SANG Y, LIU B, FANG D. The size and strain effects on the electric-field-induced domain evolution and hysteresis loop in ferroelectric BaTiO3 nanofilms[J]. Computational Materials Science, 2008, 44(2): 404-410. doi: 10.1016/j.commatsci.2008.04.001 [18] 田晓宝. 铁电体极化畴与力电耦合性能的分子动力学模拟[D]. 武汉: 华中科技大学, 2013.TIAN Xiaobao. Atomistic simulation of domain structures and electromechanical coupling responses in ferroelectric[D]. Wuhan: Huazhong University of Science and Technology, 2013. (in Chinese) [19] 关嘉怡, 张刚华, 曾涛, 等. 利用高压手段调控铁电材料结构与性能的研究进展[J]. 材料导报, 2022, 36(12): 5-12.GUAN Jiayi, ZHANG Ganghua, ZENG Tao, et al. Research progress in high pressure on tuning the structural and physical properties of ferroelectric materials[J]. Materials Reports, 2022, 36(12): 5-12. (in Chinese) [20] 肖长江. 钙钛矿铁电体在超高压下的铁电重现[J]. 材料导报, 2019, 33(7): 1163-1168.XIAO Changjiang. Ferroelectricity reentrance of perovskite ferroelectric under ultra-high pressure: an overview[J]. Materials Reports, 2019, 33(7): 1163-1168. (in Chinese)