留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超高压下钙钛矿材料铁电峰值行为研究

管豪毅 周志宏 李亚兰 梁英 田晓宝

管豪毅, 周志宏, 李亚兰, 梁英, 田晓宝. 超高压下钙钛矿材料铁电峰值行为研究[J]. 应用数学和力学, 2024, 45(10): 1313-1319. doi: 10.21656/1000-0887.450192
引用本文: 管豪毅, 周志宏, 李亚兰, 梁英, 田晓宝. 超高压下钙钛矿材料铁电峰值行为研究[J]. 应用数学和力学, 2024, 45(10): 1313-1319. doi: 10.21656/1000-0887.450192
GUAN Haoyi, ZHOU Zhihong, LI Yalan, LIANG Ying, TIAN Xiaobao. Ferroelectric Peak Behaviors of Perovskite Materials Under Ultra-High Pressure[J]. Applied Mathematics and Mechanics, 2024, 45(10): 1313-1319. doi: 10.21656/1000-0887.450192
Citation: GUAN Haoyi, ZHOU Zhihong, LI Yalan, LIANG Ying, TIAN Xiaobao. Ferroelectric Peak Behaviors of Perovskite Materials Under Ultra-High Pressure[J]. Applied Mathematics and Mechanics, 2024, 45(10): 1313-1319. doi: 10.21656/1000-0887.450192

超高压下钙钛矿材料铁电峰值行为研究

doi: 10.21656/1000-0887.450192
(我刊青年编委田晓宝来稿)
基金项目: 

国家自然科学基金 12372154

国家重点研发计划 J2019-Ⅲ-0010-0054

四川省科技计划 2024NSFSC0430

详细信息
    作者简介:

    管豪毅(1995—),男,硕士(E-mail: [email protected])

    通讯作者:

    田晓宝(1985—),男,教授,博士,博士生导师(通讯作者. E-mail: [email protected])

  • 中图分类号: O32;O521

Ferroelectric Peak Behaviors of Perovskite Materials Under Ultra-High Pressure

(Contributed by TIAN Xiaobao, M.AMM Youth Editorial Board)
  • 摘要: 压力能够显著影响钙钛矿铁电材料的晶体结构和功能特性, 且对相变温度的影响相对较小,是能比较有效地改善材料的介电和铁电性质的手段. 该文利用基于第一性原理的分子动力学方法,探究了钛酸钡(BTO)单晶在常压至150 GPa静水压力区间的铁电性演变规律. 结果表明,BTO单晶的铁电性随着压力的增加呈现出非单调的变化趋势,表现为先减弱、后增强,最后完全消失,并在42 GPa处出现峰值现象,其原因是压力导致的原子间距减小影响了长程Coulomb力与短程电子斥力的平衡. 研究揭示的BTO单晶在超高静水压力环境下的铁电性变化规律,为未来钙钛矿材料在器件领域中的应用提供了理论基础,并为实验领域研究BTO铁电性的超高压行为提供了理论指导.
    1)  (我刊青年编委田晓宝来稿)
  • 图  1  0.1 MPa~150 GPa区间BTO单晶的V/V0-P

    Figure  1.  The V/V0-P curve of the BTO single crystal with the pressure increasing from 0.1 MPa to 150 GPa

    图  2  0.1 MPa~150 GPa区间电滞回线包围的面积变化规律

    Figure  2.  The trends of the area enclosed by the electric hysteresis loop with the pressure increasing from 0.1 MPa to 150 GPa

    图  3  40~50 GPa区间电滞回线包围的面积变化规律

    Figure  3.  The trends of the area enclosed by the electric hysteresis loop with the pressure increasing from 40 GPa to 50 GPa

    图  4  40~42 GPa区间电滞回线包围的面积变化规律

    Figure  4.  The trends of the area enclosed by the electric hysteresis loop with the pressure increasing from 40 GPa to 42 GPa

    表  1  粒子电荷与壳核相互作用参数

    Table  1.   Particle charges and shell-core interaction parameters

    particle C*/|e| S*/|e| K2/(eV·Å-2) K4/(eV·Å-4)
    Ba2+ 5.62 -3.76 251.8 0.0
    Ti4+ 4.76 -1.58 322.0 500.0
    O2- 0.91 -2.59 31.0 3 000.0
    下载: 导出CSV

    表  2  短程相互作用势参数

    Table  2.   Short-range interaction potential parameters

    interaction pair Q/eV ρ C/(eV·Å6)
    Ba2+ —O2- 1 061.30 0.364 0 0.0
    Ti4+ —O2- 3 769.93 0.255 8 0.0
    O2-—O2- 4 740.00 0.280 9 160.0
    下载: 导出CSV
  • [1] SAMARA G A. Pressure and temperature dependences of the dielectric properties of the perovskites BaTiO3 and SrTiO3[J]. Physical Review, 1966, 151(2): 378. doi: 10.1103/PhysRev.151.378
    [2] 肖长江, 窦志强. 钙钛矿铁电体在超高压下的相变研究进展[J]. 人工晶体学报, 2018, 47(1): 194-199. doi: 10.3969/j.issn.1000-985X.2018.01.032

    XIAO Changjiang, DOU Zhiqiang. Research progress of phase transition of perovskite ferroelectric under super-high pressure[J]. Journal of Synthetic Crystals, 2018, 47(1): 194-199. (in Chinese) doi: 10.3969/j.issn.1000-985X.2018.01.032
    [3] ISHIDATE T, ABE S, TAKAHASHI H. Phase diagram of BaTiO3[J]. Physical Review Letter, 1997, 78(12): 2397-2400. doi: 10.1103/PhysRevLett.78.2397
    [4] VENKATESWARAN U D, NAIK V M, NAIK R. High-pressure Raman studies of polycrystalline BaTiO3[J]. Physical Review B, 1998, 58(21): 14256-14260. doi: 10.1103/PhysRevB.58.14256
    [5] KORNEV I A, BELLAICHE L, BOUVIER P, et al. Ferroelectricity of perovskites under pressure[J]. Physical Review Letters, 2005, 95(19): 196804. doi: 10.1103/PhysRevLett.95.196804
    [6] DUAN Y, TANG G, CHEN C, et al. First-principles investigations of ferroelectricity and piezoelectricity in BaTiO3/PbTiO3 superlattices[J]. Physical Review B, 2012, 85(5): 054108. doi: 10.1103/PhysRevB.85.054108
    [7] 黄艳萍, 黄晓丽, 崔田. 原位高压测试技术在高压结构及性质研究中的应用[J]. 物理, 2019, 48(10): 650-661. doi: 10.7693/wl20191004

    HUANG Yanping, HUANG Xiaoli, CUI Tian. Techniques for in-situ measurement of crystal structure and properties under high pressure[J]. Physics, 2019, 48(10): 650-661. (in Chinese) doi: 10.7693/wl20191004
    [8] 周晓玲, 王潘. 高压力学方法及研究进展[J]. 高压物理学报, 2023, 37(5): 3-10.

    ZHOU Xiaoling, WANG Pan. Methods and research progress in high pressure mechanics[J]. Chinese Journal of High Pressure Physics, 2023, 37(5): 3-10. (in Chinese)
    [9] ARAB F, KANOUNI F, SERHANE R, et al. Electromechanical sensitivity of ZnO thin films at high-pressure regime for SAW strain sensor applications[J]. Materials Today Communications, 2024, 38: 107719. doi: 10.1016/j.mtcomm.2023.107719
    [10] GAO J, XU Z, ZHANG C, et al. Hydrostatic pressure dependence of dielectric, elastic, and piezoelectric properties of Pb(Mg1/3Nb2/3)O3—0.33PbTiO3 ceramic[J]. Journal of the American Ceramic Society, 2011, 94(9): 2946-2950. doi: 10.1111/j.1551-2916.2011.04455.x
    [11] PENG P, NIE H, GUO W, et al. Pressure-induced ferroelectric-relaxor phase transition in (Bi0.5Na0.5)TiO3-based ceramics[J]. Journal of the American Ceramic Society, 2019, 102(5): 2569-2577. doi: 10.1111/jace.16069
    [12] XIE M, NIE H, WANG G, et al. Enhanced pressure-driven force-electric conversion effect for (Pb, La)(Zr, Ti)O3 ferroelectric ceramics[J]. Journal of the American Ceramic Society, 2022, 105(2): 1210-1219. doi: 10.1111/jace.18164
    [13] TANG M, HU L, WU Y, et al. Electromechanical properties of[001]-textured Mn-PMN-PZT ceramics under hydrostatic pressure[J]. Journal of the American Ceramic Society, 2024, 107(2): 1042-1051. doi: 10.1111/jace.19501
    [14] CHEN Y, WANG H, LOU X, et al. Vortex domain structures induced by strain gradient reduce ferroelectric brittleness[J]. Acta Mechanica Sinica, 2023, 39(5): 422428. doi: 10.1007/s10409-023-22428-x
    [15] SEPLIARSKY M, ASTHAGIRI A, PHILLPOT S R, et al. Atomic-level simulation of ferroelectricity in oxide materials[J]. Current Opinion in Solid State and Materials Science, 2005, 9(3): 107-113. doi: 10.1016/j.cossms.2006.05.002
    [16] TINTE S, STACHIOTTI M G, SEPLIARSKY M, et al. Atomistic modelling of BaTiO3 based on first-principles calculations[J]. Journal of Physics: Condensed Matter, 1999, 11(48): 9679-9690. doi: 10.1088/0953-8984/11/48/325
    [17] SANG Y, LIU B, FANG D. The size and strain effects on the electric-field-induced domain evolution and hysteresis loop in ferroelectric BaTiO3 nanofilms[J]. Computational Materials Science, 2008, 44(2): 404-410. doi: 10.1016/j.commatsci.2008.04.001
    [18] 田晓宝. 铁电体极化畴与力电耦合性能的分子动力学模拟[D]. 武汉: 华中科技大学, 2013.

    TIAN Xiaobao. Atomistic simulation of domain structures and electromechanical coupling responses in ferroelectric[D]. Wuhan: Huazhong University of Science and Technology, 2013. (in Chinese)
    [19] 关嘉怡, 张刚华, 曾涛, 等. 利用高压手段调控铁电材料结构与性能的研究进展[J]. 材料导报, 2022, 36(12): 5-12.

    GUAN Jiayi, ZHANG Ganghua, ZENG Tao, et al. Research progress in high pressure on tuning the structural and physical properties of ferroelectric materials[J]. Materials Reports, 2022, 36(12): 5-12. (in Chinese)
    [20] 肖长江. 钙钛矿铁电体在超高压下的铁电重现[J]. 材料导报, 2019, 33(7): 1163-1168.

    XIAO Changjiang. Ferroelectricity reentrance of perovskite ferroelectric under ultra-high pressure: an overview[J]. Materials Reports, 2019, 33(7): 1163-1168. (in Chinese)
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  78
  • HTML全文浏览量:  26
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-01
  • 修回日期:  2024-08-01
  • 刊出日期:  2024-10-01

目录

    /

    返回文章
    返回