Volume 45 Issue 10
Oct.  2024
Turn off MathJax
Article Contents
XIAO Zhengguang, ZHANG Chunli, CHEN Weiqiu. Analysis of Nonlinear Multi-Field Coupling Mechanics of Piezoelectric Semiconductor Beams via PINNs[J]. Applied Mathematics and Mechanics, 2024, 45(10): 1288-1299. doi: 10.21656/1000-0887.450070
Citation: XIAO Zhengguang, ZHANG Chunli, CHEN Weiqiu. Analysis of Nonlinear Multi-Field Coupling Mechanics of Piezoelectric Semiconductor Beams via PINNs[J]. Applied Mathematics and Mechanics, 2024, 45(10): 1288-1299. doi: 10.21656/1000-0887.450070

Analysis of Nonlinear Multi-Field Coupling Mechanics of Piezoelectric Semiconductor Beams via PINNs

doi: 10.21656/1000-0887.450070
  • Received Date: 2024-03-19
  • Rev Recd Date: 2024-04-26
  • Publish Date: 2024-10-01
  • Piezoelectric semiconductors (PSs) possess the characteristics of coexistence of piezoelectric and semiconductor properties and have broad application prospects in new multifunctional electronic/optoelectronic devices. It is very important to theoretically analyze multi-field coupling mechanical responses of PS structures under external loads. However, the governing equations describing the multi-field coupling mechanical behaviors of PS structures contain physically nonlinear current equations. On the other hand, many semiconductor devices typically operate under large deformation, which raises a geometrically nonlinear problem. The presence of physical and geometric nonlinearity poses challenges to the solution of the problem. Herein, for PS beam structures, a method based on physics informed neural networks (PINNs) was established to efficiently solve their nonlinear multi-field coupling responses. Through successive elimination of carrier-related terms and piezoelectricity-related terms from the constructed PINNs, the proposed method can be reduced to the cases of piezoelectric and pure elastic structures, respectively. With the proposed PINNs, the multi-field coupling responses of a PS beam under static uniform pressure were predicted. Numerical results show that, the proposed method can effectively solve the nonlinear multi-field coupling problems of the PS, piezoelectric and pure elastic structures. Relatively, it exhibits higher accuracy in solving piezoelectric and pure elastic structures.
  • (Contributed by ZHANG Chunli, M.AMM Youth Editorial Board & CHEN Weiqiu, M.AMM Editorial Board)
  • loading
  • [1]
    HICKERNELL F S. The piezoelectric semiconductor and acoustoelectronic device development in the sixties[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52(5): 737-745. doi: 10.1109/TUFFC.2005.1503961
    [2]
    QIN Y, WANG X D, WANG Z L. Microfibre-nanowire hybrid structure for energy scavenging[J]. Nature, 2008, 451(7180): 809-813. doi: 10.1038/nature06601
    [3]
    LIU Y, YANG Q, ZHANG Y, et al. Nanowire piezo-phototronic photodetector: theory and experimental design[J]. Advanced Materials, 2012, 24(11): 1410-1417. doi: 10.1002/adma.201104333
    [4]
    HAN W H, ZHOU Y S, ZHANG Y, et al. Strain-gated piezotronic transistors based on vertical zinc oxide nanowires[J]. ACS Nano, 2012, 6(5): 3760-3766. doi: 10.1021/nn301277m
    [5]
    WANG Z L. Piezopotential gated nanowire devices: piezotronics and piezo-phototronics[J]. Nano Today, 2010, 5(6): 540-552. doi: 10.1016/j.nantod.2010.10.008
    [6]
    罗逸璕. 层状压电半导体结构的多场耦合力学行为分析[D]. 杭州: 浙江大学, 2019.

    LUO Yixun. Analysis of multi-field coupling mechanical behavior of laminated piezoelectric semiconductor structures[D]. Hangzhou: Zhejiang University, 2019. (in Chinese)
    [7]
    梁超, 张春利. 恒磁场作用下压磁/压电半导体复合圆柱壳的耦合响应分析[J]. 固体力学学报, 2020, 41(3): 206-215.

    LIANG Chao, ZHANG Chunli. Analysis of multi-field coupling responses of piezomagnetic/piezoelectric semiconductor cylindrical shell under a constant magnetic field[J]. Chinese Journal of Solid Mechanics, 2020, 41(3): 206-215. (in Chinese)
    [8]
    程若然, 张春利. 多个局部温度载荷下压电半导体纤维杆的压电电子学行为分析[J]. 力学学报, 2020, 52(5): 1295-1303.

    CHENG Ruoran, ZHANG Chunli. Analysis of the piezotronic effect of a piezoeletric semiconductor fiber under mutiple local temperature loadings[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1295-1303. (in Chinese)
    [9]
    李德志, 张春利. 弹性纵波在压电-压电半导体周期杆中的传播[J]. 哈尔滨工程大学学报, 2022, 43(9): 1252-1257.

    LI Dezhi, ZHANG Chunli. Propagation of elastic longitudinal waves in a periodic piezoelectric-piezosemiconductor rod[J]. Journal of Harbin Engineering University, 2022, 43(9): 1252-1257. (in Chinese)
    [10]
    ZHANG C L, WANG X Y, CHEN W Q, et al. Carrier distribution and electromechanical fields in a free piezoelectric semiconductor rod[J]. Journal of Zhejiang University (Science A), 2016, 17(1): 37-44.
    [11]
    王晓媛. 一维压电半导体杆的力学行为研究[D]. 杭州: 浙江大学, 2017.

    WANG Xiaoyuan. Research on mechanical behaviors of one-dimensional piezoelectric semiconductor rods[D]. Hangzhou: Zhejiang University, 2017. (in Chinese)
    [12]
    CHENG R R, ZHANG C L, CHEN W Q, et al. Temperature effects on mobile charges in extension of composite fibers of piezoelectric dielectrics and non-piezoelectric semiconductors[J]. International Journal of Applied Mechanics, 2019, 11(9): 1950088. doi: 10.1142/S1758825119500881
    [13]
    LUO Y X, ZHANG C L, CHEN W Q, et al. Thermally induced electromechanical fields in unimorphs of piezoelectric dielectrics and nonpiezoelectric semiconductors[J]. Integrated Ferroelectrics, 2020, 211(1): 117-131. doi: 10.1080/10584587.2020.1803680
    [14]
    ZHANG C L, WANG X Y, CHEN W Q, et al. An analysis of the extension of a ZnO piezoelectric semiconductor nanofiber under an axial force[J]. Smart Materials and Structures, 2017, 26(2): 025030. doi: 10.1088/1361-665X/aa542e
    [15]
    FAN S Q, HU Y T, YANG J S. Stress-induced potential barriers and charge distributions in a piezoelectric semiconductor nanofiber[J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(5): 591-600. doi: 10.1007/s10483-019-2481-6
    [16]
    HUANG H Y, QIAN Z H, YANG J S. Ⅰ-Ⅴ characteristics of a piezoelectric semiconductor nanofiber under local tensile/compressive stress[J]. Journal of Applied Physics, 2019, 126(16): 164902. doi: 10.1063/1.5110876
    [17]
    ANCONA M G, BINARI S C, MEYER D J. Fully coupled thermoelectromechanical analysis of GaN high electron mobility transistor degradation[J]. Journal of Applied Physics, 2012, 111(7): 074504. doi: 10.1063/1.3698492
    [18]
    ANCONA M G. Fully coupled thermoelectroelastic simulations of GaN devices[C]// 2012 International Electron Devices Meeting. San Francisco, CA, USA, 2012: 13.5.1-13.5.4.
    [19]
    ANCONA M G. Nonlinear thermoelectroelastic simulation of Ⅲ-N devices[C]// 2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD). Yokohama, Japan, 2014: 121-124.
    [20]
    ANCONA M G. Nonlinear thermoelectroelastic analysis of Ⅲ-N semiconductor devices[J]. IEEE Journal of the Electron Devices Society, 2017, 5(5): 320-334. doi: 10.1109/JEDS.2017.2731119
    [21]
    ZHAO M H, ZHANG Q Y, FAN C. An efficient iteration approach for nonlinear boundary value problems in 2D piezoelectric semiconductors[J]. Applied Mathematical Modelling, 2019, 74: 170-183. doi: 10.1016/j.apm.2019.04.042
    [22]
    ZHAO M H, MA Z L, LU C S, et al. Application of the homopoty analysis method to nonlinear characteristics of a piezoelectric semiconductor fiber[J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(5): 665-676. doi: 10.1007/s10483-021-2726-5
    [23]
    ZHAO M H, YANG C H, FAN C Y, et al. A shooting method for nonlinear boundary value problems in a thermal piezoelectric semiconductor plate[J]. ZAMM Journal of Applied Mathematics and Mechanics, 2020, 100(12): e201900302. doi: 10.1002/zamm.201900302
    [24]
    BAO G F, LI D Z, KONG D J, et. al. Analysis of axially loaded piezoelectric semiconductor rods with geometric nonlinearity[J]. International Journal of Applied Mechanics, 2022, 14(10): 2250104. doi: 10.1142/S1758825122501046
    [25]
    PANG G, D'ELIA M, PARKS M, et al. nPINNs: nonlocal physics-informed neural networks for a parametrized nonlocal universal Laplacian operator. Algorithms and applications[J]. Journal of Computational Physics, 2020, 422: 109760. doi: 10.1016/j.jcp.2020.109760
    [26]
    HAGHIGHAT E, JUANES R. SciANN: a Keras/TensorFlow wrapper for scientific computations and physics-informed deep learning using artificial neural networks[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 373: 113552. doi: 10.1016/j.cma.2020.113552
    [27]
    MENG X, LI Z, ZHANG D, et al. PPINN: parareal physics-informed neural network for time-dependent PDEs[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 370: 113250. doi: 10.1016/j.cma.2020.113250
    [28]
    ZHAO Q K, YANG H Y, LIU J B, et al. Machine learning-assisted discovery of strong and conductive Cu alloys: data mining from discarded experiments and physical features[J]. Materials & Design, 2021, 197: 109248.
    [29]
    LIU X, ATHANASIOU C E, PADTURE N P, et al. A machine learning approach to fracture mechanics problems[J]. Acta Materialia, 2020, 190: 105-112. doi: 10.1016/j.actamat.2020.03.016
    [30]
    HENKES A, WESSELS H, MAHNKEN R. Physics informed neural networks for continuum micromechanics[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 393: 114790. doi: 10.1016/j.cma.2022.114790
    [31]
    ATHREYA A P, BRÜCKL T, BINDER E B, et al. Prediction of short-term antidepressant response using probabilistic graphical models with replication across multiple drugs and treatment settings[J]. Neuropsychopharmacology, 2021, 46(7): 1272-1282. doi: 10.1038/s41386-020-00943-x
    [32]
    RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686-707. doi: 10.1016/j.jcp.2018.10.045
    [33]
    JAGTAP A D, KARNIADAKIS G E. Extended physics-informed neural networks (XPINNs): a generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations[J]. Communications in Computational Physics, 2020, 28(5): 2002-2041. doi: 10.4208/cicp.OA-2020-0164
    [34]
    RAISSI M, YAZDANI A, KARNIADAKIS G E. Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations[J]. Science, 2020, 367(6481): 1026-1030. doi: 10.1126/science.aaw4741
    [35]
    HAGHIGHAT E, RAISSI M, MOURE A, et al. A physics-informed deep learning framework for inversion and surrogate modeling in solid mechanics[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 379: 113741. doi: 10.1016/j.cma.2021.113741
    [36]
    REDDY J N. Mechanics of Laminated Composite Plates and Shells[M]. CRC Press, 2004.
    [37]
    AULD B A. Acoustic Fields and Waves in Solids[M]. Vol 1. Wiley-Inter Science Publication, 1974.
  • 加载中

Catalog

    通讯作者: 陈斌, [email protected]
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article Metrics

    Article views (113) PDF downloads(46) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return