Citation: | XIAO Zhengguang, ZHANG Chunli, CHEN Weiqiu. Analysis of Nonlinear Multi-Field Coupling Mechanics of Piezoelectric Semiconductor Beams via PINNs[J]. Applied Mathematics and Mechanics, 2024, 45(10): 1288-1299. doi: 10.21656/1000-0887.450070 |
[1] |
HICKERNELL F S. The piezoelectric semiconductor and acoustoelectronic device development in the sixties[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52(5): 737-745. doi: 10.1109/TUFFC.2005.1503961
|
[2] |
QIN Y, WANG X D, WANG Z L. Microfibre-nanowire hybrid structure for energy scavenging[J]. Nature, 2008, 451(7180): 809-813. doi: 10.1038/nature06601
|
[3] |
LIU Y, YANG Q, ZHANG Y, et al. Nanowire piezo-phototronic photodetector: theory and experimental design[J]. Advanced Materials, 2012, 24(11): 1410-1417. doi: 10.1002/adma.201104333
|
[4] |
HAN W H, ZHOU Y S, ZHANG Y, et al. Strain-gated piezotronic transistors based on vertical zinc oxide nanowires[J]. ACS Nano, 2012, 6(5): 3760-3766. doi: 10.1021/nn301277m
|
[5] |
WANG Z L. Piezopotential gated nanowire devices: piezotronics and piezo-phototronics[J]. Nano Today, 2010, 5(6): 540-552. doi: 10.1016/j.nantod.2010.10.008
|
[6] |
罗逸璕. 层状压电半导体结构的多场耦合力学行为分析[D]. 杭州: 浙江大学, 2019.
LUO Yixun. Analysis of multi-field coupling mechanical behavior of laminated piezoelectric semiconductor structures[D]. Hangzhou: Zhejiang University, 2019. (in Chinese)
|
[7] |
梁超, 张春利. 恒磁场作用下压磁/压电半导体复合圆柱壳的耦合响应分析[J]. 固体力学学报, 2020, 41(3): 206-215.
LIANG Chao, ZHANG Chunli. Analysis of multi-field coupling responses of piezomagnetic/piezoelectric semiconductor cylindrical shell under a constant magnetic field[J]. Chinese Journal of Solid Mechanics, 2020, 41(3): 206-215. (in Chinese)
|
[8] |
程若然, 张春利. 多个局部温度载荷下压电半导体纤维杆的压电电子学行为分析[J]. 力学学报, 2020, 52(5): 1295-1303.
CHENG Ruoran, ZHANG Chunli. Analysis of the piezotronic effect of a piezoeletric semiconductor fiber under mutiple local temperature loadings[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1295-1303. (in Chinese)
|
[9] |
李德志, 张春利. 弹性纵波在压电-压电半导体周期杆中的传播[J]. 哈尔滨工程大学学报, 2022, 43(9): 1252-1257.
LI Dezhi, ZHANG Chunli. Propagation of elastic longitudinal waves in a periodic piezoelectric-piezosemiconductor rod[J]. Journal of Harbin Engineering University, 2022, 43(9): 1252-1257. (in Chinese)
|
[10] |
ZHANG C L, WANG X Y, CHEN W Q, et al. Carrier distribution and electromechanical fields in a free piezoelectric semiconductor rod[J]. Journal of Zhejiang University (Science A), 2016, 17(1): 37-44.
|
[11] |
王晓媛. 一维压电半导体杆的力学行为研究[D]. 杭州: 浙江大学, 2017.
WANG Xiaoyuan. Research on mechanical behaviors of one-dimensional piezoelectric semiconductor rods[D]. Hangzhou: Zhejiang University, 2017. (in Chinese)
|
[12] |
CHENG R R, ZHANG C L, CHEN W Q, et al. Temperature effects on mobile charges in extension of composite fibers of piezoelectric dielectrics and non-piezoelectric semiconductors[J]. International Journal of Applied Mechanics, 2019, 11(9): 1950088. doi: 10.1142/S1758825119500881
|
[13] |
LUO Y X, ZHANG C L, CHEN W Q, et al. Thermally induced electromechanical fields in unimorphs of piezoelectric dielectrics and nonpiezoelectric semiconductors[J]. Integrated Ferroelectrics, 2020, 211(1): 117-131. doi: 10.1080/10584587.2020.1803680
|
[14] |
ZHANG C L, WANG X Y, CHEN W Q, et al. An analysis of the extension of a ZnO piezoelectric semiconductor nanofiber under an axial force[J]. Smart Materials and Structures, 2017, 26(2): 025030. doi: 10.1088/1361-665X/aa542e
|
[15] |
FAN S Q, HU Y T, YANG J S. Stress-induced potential barriers and charge distributions in a piezoelectric semiconductor nanofiber[J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(5): 591-600. doi: 10.1007/s10483-019-2481-6
|
[16] |
HUANG H Y, QIAN Z H, YANG J S. Ⅰ-Ⅴ characteristics of a piezoelectric semiconductor nanofiber under local tensile/compressive stress[J]. Journal of Applied Physics, 2019, 126(16): 164902. doi: 10.1063/1.5110876
|
[17] |
ANCONA M G, BINARI S C, MEYER D J. Fully coupled thermoelectromechanical analysis of GaN high electron mobility transistor degradation[J]. Journal of Applied Physics, 2012, 111(7): 074504. doi: 10.1063/1.3698492
|
[18] |
ANCONA M G. Fully coupled thermoelectroelastic simulations of GaN devices[C]// 2012 International Electron Devices Meeting. San Francisco, CA, USA, 2012: 13.5.1-13.5.4.
|
[19] |
ANCONA M G. Nonlinear thermoelectroelastic simulation of Ⅲ-N devices[C]// 2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD). Yokohama, Japan, 2014: 121-124.
|
[20] |
ANCONA M G. Nonlinear thermoelectroelastic analysis of Ⅲ-N semiconductor devices[J]. IEEE Journal of the Electron Devices Society, 2017, 5(5): 320-334. doi: 10.1109/JEDS.2017.2731119
|
[21] |
ZHAO M H, ZHANG Q Y, FAN C. An efficient iteration approach for nonlinear boundary value problems in 2D piezoelectric semiconductors[J]. Applied Mathematical Modelling, 2019, 74: 170-183. doi: 10.1016/j.apm.2019.04.042
|
[22] |
ZHAO M H, MA Z L, LU C S, et al. Application of the homopoty analysis method to nonlinear characteristics of a piezoelectric semiconductor fiber[J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(5): 665-676. doi: 10.1007/s10483-021-2726-5
|
[23] |
ZHAO M H, YANG C H, FAN C Y, et al. A shooting method for nonlinear boundary value problems in a thermal piezoelectric semiconductor plate[J]. ZAMM Journal of Applied Mathematics and Mechanics, 2020, 100(12): e201900302. doi: 10.1002/zamm.201900302
|
[24] |
BAO G F, LI D Z, KONG D J, et. al. Analysis of axially loaded piezoelectric semiconductor rods with geometric nonlinearity[J]. International Journal of Applied Mechanics, 2022, 14(10): 2250104. doi: 10.1142/S1758825122501046
|
[25] |
PANG G, D'ELIA M, PARKS M, et al. nPINNs: nonlocal physics-informed neural networks for a parametrized nonlocal universal Laplacian operator. Algorithms and applications[J]. Journal of Computational Physics, 2020, 422: 109760. doi: 10.1016/j.jcp.2020.109760
|
[26] |
HAGHIGHAT E, JUANES R. SciANN: a Keras/TensorFlow wrapper for scientific computations and physics-informed deep learning using artificial neural networks[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 373: 113552. doi: 10.1016/j.cma.2020.113552
|
[27] |
MENG X, LI Z, ZHANG D, et al. PPINN: parareal physics-informed neural network for time-dependent PDEs[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 370: 113250. doi: 10.1016/j.cma.2020.113250
|
[28] |
ZHAO Q K, YANG H Y, LIU J B, et al. Machine learning-assisted discovery of strong and conductive Cu alloys: data mining from discarded experiments and physical features[J]. Materials & Design, 2021, 197: 109248.
|
[29] |
LIU X, ATHANASIOU C E, PADTURE N P, et al. A machine learning approach to fracture mechanics problems[J]. Acta Materialia, 2020, 190: 105-112. doi: 10.1016/j.actamat.2020.03.016
|
[30] |
HENKES A, WESSELS H, MAHNKEN R. Physics informed neural networks for continuum micromechanics[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 393: 114790. doi: 10.1016/j.cma.2022.114790
|
[31] |
ATHREYA A P, BRÜCKL T, BINDER E B, et al. Prediction of short-term antidepressant response using probabilistic graphical models with replication across multiple drugs and treatment settings[J]. Neuropsychopharmacology, 2021, 46(7): 1272-1282. doi: 10.1038/s41386-020-00943-x
|
[32] |
RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686-707. doi: 10.1016/j.jcp.2018.10.045
|
[33] |
JAGTAP A D, KARNIADAKIS G E. Extended physics-informed neural networks (XPINNs): a generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations[J]. Communications in Computational Physics, 2020, 28(5): 2002-2041. doi: 10.4208/cicp.OA-2020-0164
|
[34] |
RAISSI M, YAZDANI A, KARNIADAKIS G E. Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations[J]. Science, 2020, 367(6481): 1026-1030. doi: 10.1126/science.aaw4741
|
[35] |
HAGHIGHAT E, RAISSI M, MOURE A, et al. A physics-informed deep learning framework for inversion and surrogate modeling in solid mechanics[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 379: 113741. doi: 10.1016/j.cma.2021.113741
|
[36] |
REDDY J N. Mechanics of Laminated Composite Plates and Shells[M]. CRC Press, 2004.
|
[37] |
AULD B A. Acoustic Fields and Waves in Solids[M]. Vol 1. Wiley-Inter Science Publication, 1974.
|