Citation: | CUI Youjiang, LIU Chao, CHEN Jiapeng, WANG Biao, WANG Baolin. Thermo-Electric-Mechanical Coupling Bending Property and Strength Analyses of Thermoelectric Devices With the Negative Poisson's Ratio Architecture[J]. Applied Mathematics and Mechanics, 2024, 45(10): 1243-1255. doi: 10.21656/1000-0887.450113 |
[1] |
JIANG F, ZHOU X, LV J, et al. Stretchable, breathable, and stable lead-free perovskite/polymer nanofiber composite for hybrid triboelectric and piezoelectric energy harvesting[J]. Advanced Materials, 2022, 34(17): 2200042. doi: 10.1002/adma.202200042
|
[2] |
崔有江, 王保林, 王开发. 多孔泡沫热电器件断裂及其对能量转化性能的影响规律研究[J]. 应用数学和力学, 2023, 44(11): 1291-1298. doi: 10.21656/1000-0887.440147
CUI Youjiang, WANG Baolin, WANG Kaifa. Evaluation of fracture and its effects on energy conversion performance of porous foam thermoelectric generators[J]. Applied Mathematics and Mechanics, 2023, 44(11): 1291-1298. (in Chinese) doi: 10.21656/1000-0887.440147
|
[3] |
SHI X L, SUN S, WU T, et al. Weavable thermoelectrics: advances, controversies, and future developments[J]. Materials Futures, 2024, 3(1): 012103. doi: 10.1088/2752-5724/ad0ca9
|
[4] |
YANG Y, DENG H, FU Q. Recent progress on PEDOT: PSS based polymer blends and composites for flexible electronics and thermoelectric devices[J]. Materials Chemistry Frontiers, 2020, 4(11): 3130-3152. doi: 10.1039/D0QM00308E
|
[5] |
SUN T T, ZHOU B Y, ZHENG Q, et al. Stretchable fabric generates electric power from woven thermoelectric fibers[J]. Nature Communications, 2020, 11(1): 572. doi: 10.1038/s41467-020-14399-6
|
[6] |
NAN K W, KANG S D, LI K, et al. Compliant and stretchable thermoelectric coils for energy harvesting in miniature flexible devices[J]. Science Advances, 2018, 4(11): eaau5849. doi: 10.1126/sciadv.aau5849
|
[7] |
KONG D Y, ZHU W, GUO Z P, et al. High-performance flexible Bi2Te3 films based wearable thermoelectric generator for energy harvesting[J]. Energy, 2019, 175: 292-299. doi: 10.1016/j.energy.2019.03.060
|
[8] |
ZHAO X, ZHAO C S, JIANG Y F, et al. Flexible cellulose nanofiber/Bi2Te3 composite film for wearable thermoelectric devices[J]. Journal of Power Sources, 2020, 479: 229044. doi: 10.1016/j.jpowsour.2020.229044
|
[9] |
KARTHIKEYAN V, SURJADI J U, WONG J C K, et al. Wearable and flexible thin film thermoelectric module for multi-scale energy harvesting[J]. Journal of Power Sources, 2020, 455: 227983. doi: 10.1016/j.jpowsour.2020.227983
|
[10] |
CUI Y J, WANG B L, WANG P. Analysis of thermally induced delamination and buckling of thin-film thermoelectric generators made up of pn-junctions[J]. International Journal of Mechanical Sciences, 2018, 149: 393-401. doi: 10.1016/j.ijmecsci.2017.10.049
|
[11] |
KOGO G, XIAO B, DANQUAH S, et al. A thin film efficient pn-junction thermoelectric device fabricated by self-align shadow mask[J]. Scientific Reports, 2020, 10(1): 1067. doi: 10.1038/s41598-020-57991-y
|
[12] |
ROJAS J P, SINGH D, CONCHOUSO D, et al. Stretchable helical architecture inorganic-organic hetero thermoelectric generator[J]. Nano Energy, 2016, 30: 691-699. doi: 10.1016/j.nanoen.2016.10.054
|
[13] |
XU X J, ZUO Y, CAI S, et al. Three-dimensional helical inorganic thermoelectric generators and photodetectors for stretchable and wearable electronic devices[J]. Journal of Materials Chemistry C, 2018, 6(18): 4866-4872. doi: 10.1039/C8TC01183D
|
[14] |
FENG R, TANG F, ZHANG N, et al. Flexible, high-power density, wearable thermoelectric nanogenerator and self-powered temperature sensor[J]. ACS Applied Materials & Interfaces, 2019, 11(42): 38616-38624.
|
[15] |
LEE G, KIM C S, KIM S, et al. Flexible heatsink based on a phase-change material for a wearable thermoelectric generator[J]. Energy, 2019, 179: 12-18. doi: 10.1016/j.energy.2019.05.018
|
[16] |
FUKUIE K, IWATA Y, IWASE E. Design of substrate stretchability using origami-like folding deformation for flexible thermoelectric generator[J]. Micromachines, 2018, 9(7): 315. doi: 10.3390/mi9070315
|
[17] |
PARK H, LEE D, KIM D, et al. High power output from body heat harvesting based on flexible thermoelectric system with low thermal contact resistance[J]. Journal of Physics D: Applied Physics, 2018, 51(36): 365501. doi: 10.1088/1361-6463/aad270
|
[18] |
周世奇, 侯秀慧, 邓子辰. 一般宏观应力状态下凹角蜂窝结构的屈曲性能分析[J]. 应用数学和力学, 2023, 44(1): 12-24. doi: 10.21656/1000-0887.430202
ZHOU Shiqi, HOU Xiuhui, DENG Zichen. Buckling analysis of re-entrant honeycomb structures under general macroscopic stress states[J]. Applied Mathematics and Mechanics, 2023, 44(1): 12-24. (in Chinese) doi: 10.21656/1000-0887.430202
|
[19] |
CUI Y J, LIU C, WANG K F, et al. Effect of negative Poisson's ratio architecture on fatigue life and output power of flexible wearable thermoelectric generators[J]. Engineering Fracture Mechanics, 2023, 281: 109142. doi: 10.1016/j.engfracmech.2023.109142
|
[20] |
CUI Y J, LI W J, WANG K F, et al. Thermal shock fracture of honeycomb-based porous thermoelectric materials with non-Fourier heat conduction[J]. Ceramics International, 2024, 50(1): 2151-2161. doi: 10.1016/j.ceramint.2023.10.328
|
[21] |
CUI Y J, WANG B L, WANG K F, et al. An analytical model to evaluate influence of negative Poisson's ratio architecture on fatigue life and energy conversion performance of wearable thermoelectric generator[J]. International Journal of Solids and Structures, 2022, 258: 112000. doi: 10.1016/j.ijsolstr.2022.112000
|
[22] |
WE J H, KIM S J, CHO B J. Hybrid composite of screen-printed inorganic thermoelectric film and organic conducting polymer for flexible thermoelectric power generator[J]. Energy, 2014, 73: 506-512. doi: 10.1016/j.energy.2014.06.047
|
[23] |
HU J S, WANG B L, HIRAKATA H, et al. Interfacial thermal damage and fatigue between auxetic honeycomb sandwich and underneath substrate[J]. International Journal of Solids and Structures, 2023, 279: 112364. doi: 10.1016/j.ijsolstr.2023.112364
|
[24] |
PENG J, LI D K, HUANG Z X, et al. Interfacial behavior of a thermoelectric film bonded to a graded substrate[J]. Applied Mathematics and Mechanics(English Edition), 2023, 44(11): 1853-1870. doi: 10.1007/s10483-023-3045-8
|
[25] |
MIAO X Y, LI C F, PAN Y C. Research on the dynamic characteristics of rotating metal-ceramic matrix DFG-CNTRC thin laminated shell with arbitrary boundary conditions[J]. Thin-Walled Structures, 2022, 179: 109475. doi: 10.1016/j.tws.2022.109475
|
[26] |
王彪. 热力学强度理论[J]. 力学进展, 2023, 53(3): 693-712.
WANG Biao. Thermodynamic strength theory (TST)[J]. Advances in Mechanics, 2023, 53(3): 693-712. (in Chinese)
|
[27] |
WANG B. The principle of virtual energy for predicting the strength of material structures[J]. Engineering Fracture Mechanics, 2024, 300: 109997. doi: 10.1016/j.engfracmech.2024.109997
|
[28] |
JANSSEN M, ZUIDEMA J, WANHILL R J H. Fracture Mechanics[M]. 2nd ed. London: Spon Press, 2004: 83-106.
|
[29] |
蒋玉川, 蒲淳清. 用Westergaard应力函数求解Ⅰ-Ⅱ复合型平面裂纹问题的研讨[J]. 力学与实践, 2020, 42(4): 504-507.
JIANG Yuchuan, PU Chunqing. The problem of Ⅰ-Ⅱ combined plane crack solved with Westergaard stress function[J]. Mechanics in Engineering, 2020, 42(4): 504-507. (in Chinese)
|