Volume 45 Issue 10
Oct.  2024
Turn off MathJax
Article Contents
GUAN Haoyi, ZHOU Zhihong, LI Yalan, LIANG Ying, TIAN Xiaobao. Ferroelectric Peak Behaviors of Perovskite Materials Under Ultra-High Pressure[J]. Applied Mathematics and Mechanics, 2024, 45(10): 1313-1319. doi: 10.21656/1000-0887.450192
Citation: GUAN Haoyi, ZHOU Zhihong, LI Yalan, LIANG Ying, TIAN Xiaobao. Ferroelectric Peak Behaviors of Perovskite Materials Under Ultra-High Pressure[J]. Applied Mathematics and Mechanics, 2024, 45(10): 1313-1319. doi: 10.21656/1000-0887.450192

Ferroelectric Peak Behaviors of Perovskite Materials Under Ultra-High Pressure

doi: 10.21656/1000-0887.450192
  • Received Date: 2024-07-01
  • Rev Recd Date: 2024-08-01
  • Publish Date: 2024-10-01
  • Pressure has significant influences on the crystal structures and functional properties of perovskite ferroelectric materials, but relatively minor impact on the phase transition temperature, and can serve as an effective means to enhance the dielectric and ferroelectric properties of these materials. Molecular dynamics simulations were conducted based on the first principles to explore the evolution of ferroelectricity in barium titanate (BTO) single crystals subjected to hydrostatic pressures ranging from the atmospheric pressure to 150 GPa. The findings demonstrate that, a non-monotonic trend of the ferroelectricity of BTO occurs with the increase of the pressure. The ferroelectric first weakens, then intensifies, and finally disappears, with a peak at 42 GPa. This behavior can be attributed to the pressure-induced reduction in atomic spacings. This reduction disrupts the delicate balance between long-range Coulomb forces and short-range electron repulsions. The findings elucidate the ferroelectric behavior of BTO single crystals under ultra-high hydrostatic pressure, providing a theoretical foundation for their future applications to devices and offering valuable theoretical guidance for experimental investigations of BTO ferroelectricity under ultra-high pressures.
  • (Contributed by TIAN Xiaobao, M.AMM Youth Editorial Board)
  • loading
  • [1]
    SAMARA G A. Pressure and temperature dependences of the dielectric properties of the perovskites BaTiO3 and SrTiO3[J]. Physical Review, 1966, 151(2): 378. doi: 10.1103/PhysRev.151.378
    [2]
    肖长江, 窦志强. 钙钛矿铁电体在超高压下的相变研究进展[J]. 人工晶体学报, 2018, 47(1): 194-199. doi: 10.3969/j.issn.1000-985X.2018.01.032

    XIAO Changjiang, DOU Zhiqiang. Research progress of phase transition of perovskite ferroelectric under super-high pressure[J]. Journal of Synthetic Crystals, 2018, 47(1): 194-199. (in Chinese) doi: 10.3969/j.issn.1000-985X.2018.01.032
    [3]
    ISHIDATE T, ABE S, TAKAHASHI H. Phase diagram of BaTiO3[J]. Physical Review Letter, 1997, 78(12): 2397-2400. doi: 10.1103/PhysRevLett.78.2397
    [4]
    VENKATESWARAN U D, NAIK V M, NAIK R. High-pressure Raman studies of polycrystalline BaTiO3[J]. Physical Review B, 1998, 58(21): 14256-14260. doi: 10.1103/PhysRevB.58.14256
    [5]
    KORNEV I A, BELLAICHE L, BOUVIER P, et al. Ferroelectricity of perovskites under pressure[J]. Physical Review Letters, 2005, 95(19): 196804. doi: 10.1103/PhysRevLett.95.196804
    [6]
    DUAN Y, TANG G, CHEN C, et al. First-principles investigations of ferroelectricity and piezoelectricity in BaTiO3/PbTiO3 superlattices[J]. Physical Review B, 2012, 85(5): 054108. doi: 10.1103/PhysRevB.85.054108
    [7]
    黄艳萍, 黄晓丽, 崔田. 原位高压测试技术在高压结构及性质研究中的应用[J]. 物理, 2019, 48(10): 650-661. doi: 10.7693/wl20191004

    HUANG Yanping, HUANG Xiaoli, CUI Tian. Techniques for in-situ measurement of crystal structure and properties under high pressure[J]. Physics, 2019, 48(10): 650-661. (in Chinese) doi: 10.7693/wl20191004
    [8]
    周晓玲, 王潘. 高压力学方法及研究进展[J]. 高压物理学报, 2023, 37(5): 3-10.

    ZHOU Xiaoling, WANG Pan. Methods and research progress in high pressure mechanics[J]. Chinese Journal of High Pressure Physics, 2023, 37(5): 3-10. (in Chinese)
    [9]
    ARAB F, KANOUNI F, SERHANE R, et al. Electromechanical sensitivity of ZnO thin films at high-pressure regime for SAW strain sensor applications[J]. Materials Today Communications, 2024, 38: 107719. doi: 10.1016/j.mtcomm.2023.107719
    [10]
    GAO J, XU Z, ZHANG C, et al. Hydrostatic pressure dependence of dielectric, elastic, and piezoelectric properties of Pb(Mg1/3Nb2/3)O3—0.33PbTiO3 ceramic[J]. Journal of the American Ceramic Society, 2011, 94(9): 2946-2950. doi: 10.1111/j.1551-2916.2011.04455.x
    [11]
    PENG P, NIE H, GUO W, et al. Pressure-induced ferroelectric-relaxor phase transition in (Bi0.5Na0.5)TiO3-based ceramics[J]. Journal of the American Ceramic Society, 2019, 102(5): 2569-2577. doi: 10.1111/jace.16069
    [12]
    XIE M, NIE H, WANG G, et al. Enhanced pressure-driven force-electric conversion effect for (Pb, La)(Zr, Ti)O3 ferroelectric ceramics[J]. Journal of the American Ceramic Society, 2022, 105(2): 1210-1219. doi: 10.1111/jace.18164
    [13]
    TANG M, HU L, WU Y, et al. Electromechanical properties of[001]-textured Mn-PMN-PZT ceramics under hydrostatic pressure[J]. Journal of the American Ceramic Society, 2024, 107(2): 1042-1051. doi: 10.1111/jace.19501
    [14]
    CHEN Y, WANG H, LOU X, et al. Vortex domain structures induced by strain gradient reduce ferroelectric brittleness[J]. Acta Mechanica Sinica, 2023, 39(5): 422428. doi: 10.1007/s10409-023-22428-x
    [15]
    SEPLIARSKY M, ASTHAGIRI A, PHILLPOT S R, et al. Atomic-level simulation of ferroelectricity in oxide materials[J]. Current Opinion in Solid State and Materials Science, 2005, 9(3): 107-113. doi: 10.1016/j.cossms.2006.05.002
    [16]
    TINTE S, STACHIOTTI M G, SEPLIARSKY M, et al. Atomistic modelling of BaTiO3 based on first-principles calculations[J]. Journal of Physics: Condensed Matter, 1999, 11(48): 9679-9690. doi: 10.1088/0953-8984/11/48/325
    [17]
    SANG Y, LIU B, FANG D. The size and strain effects on the electric-field-induced domain evolution and hysteresis loop in ferroelectric BaTiO3 nanofilms[J]. Computational Materials Science, 2008, 44(2): 404-410. doi: 10.1016/j.commatsci.2008.04.001
    [18]
    田晓宝. 铁电体极化畴与力电耦合性能的分子动力学模拟[D]. 武汉: 华中科技大学, 2013.

    TIAN Xiaobao. Atomistic simulation of domain structures and electromechanical coupling responses in ferroelectric[D]. Wuhan: Huazhong University of Science and Technology, 2013. (in Chinese)
    [19]
    关嘉怡, 张刚华, 曾涛, 等. 利用高压手段调控铁电材料结构与性能的研究进展[J]. 材料导报, 2022, 36(12): 5-12.

    GUAN Jiayi, ZHANG Ganghua, ZENG Tao, et al. Research progress in high pressure on tuning the structural and physical properties of ferroelectric materials[J]. Materials Reports, 2022, 36(12): 5-12. (in Chinese)
    [20]
    肖长江. 钙钛矿铁电体在超高压下的铁电重现[J]. 材料导报, 2019, 33(7): 1163-1168.

    XIAO Changjiang. Ferroelectricity reentrance of perovskite ferroelectric under ultra-high pressure: an overview[J]. Materials Reports, 2019, 33(7): 1163-1168. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, [email protected]
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article Metrics

    Article views (88) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return