Citation: | DONG Yanzhe, LU Xiaoyan. Design and Multi-State Tunneling Characteristics of Perovskite Ferroelectric Ultrathin Films With Low-Driving Fields[J]. Applied Mathematics and Mechanics, 2024, 45(10): 1320-1331. doi: 10.21656/1000-0887.450224 |
[1] |
ATHLE R, BORG M. Ferroelectric tunnel junction memristors for in-memory computing accelerators[J]. Advanced Intelligent Systems, 2024, 6(3): 2300554. doi: 10.1002/aisy.202300554
|
[2] |
GARCIA V, BIBES M. Ferroelectric tunnel junctions for information storage and processing[J]. Nature Communications, 2014, 5(1): 4289. doi: 10.1038/ncomms5289
|
[3] |
DU X Z, SUN H Y, WANG H, et al. High-speed switching and giant electroresistance in an epitaxial Hf0.5Zr0.5O2-based ferroelectric tunnel junction memristor[J]. ACS Applied Materials & Interfaces, 2022, 14(1): 1355-1361.
|
[4] |
ESAKI A L, LAIBOWITZ R B, STILES P J. Polar switch[J]. IBM Technical Disclosure Bulletin, 1971, 13(8): 2161-2164.
|
[5] |
YANO Y, LIJIMA K, DAITOH Y, et al. Epitaxial growth and dielectric properties of BaTiO3 films on Pt electrodes by reactive evaporation[J]. Journal of Applied Physics, 1994, 76(12): 7833-7838. doi: 10.1063/1.357891
|
[6] |
MARUYAMA T, SAITOH M, SAKAI I, et al. Growth and characterization of 10-nm-thick c-axis oriented epitaxial PbZr0.25Ti0.75O3 thin films on (100)Si substrate[J]. Applied Physics Letters, 1998, 73(24): 3524-3526. doi: 10.1063/1.122824
|
[7] |
COHEN R E. Origin of ferroelectricity in perovskite oxides[J]. Nature, 1992, 358: 136-138. doi: 10.1038/358136a0
|
[8] |
JUNQUERA J, GHOSEZ P. Critical thickness for ferroelectricity in perovskite ultrathin films[J]. Nature, 2003, 422(6931): 506-509. doi: 10.1038/nature01501
|
[9] |
FONG D D, STEPHENSON G B, STREIFFER S K, et al. Ferroelectricity in ultrathin perovskite films[J]. Science, 2004, 304(5677): 1650-1653. doi: 10.1126/science.1098252
|
[10] |
CONTRERAS J R, KOHLSTEDT H, POPPE U, et al. Resistive switching in metal-ferroelectric-metal junctions[J]. Applied Physics Letters, 2003, 83(22): 4595-4597. doi: 10.1063/1.1627944
|
[11] |
KOHLSTEDT H, PERTSEV N A, CONTRERASJ R, et al. Theoretical current-voltage characteristics of ferroelectric tunnel junctions[J]. Physical Review B, 2005, 72(12): 125341. doi: 10.1103/PhysRevB.72.125341
|
[12] |
WEN Z, WU D. Ferroelectric tunnel junctions: modulations on the potential barrier[J]. Advanced Materials, 2020, 32(27): 1904123. doi: 10.1002/adma.201904123
|
[13] |
JIA Y Y, YANG Q Q, FANG Y W, et al. Giant tunnelling electroresistance in atomic-scale ferroelectric tunnel junctions[J]. Nature Communications, 2024, 15(1): 693. doi: 10.1038/s41467-024-44927-7
|
[14] |
MAX B, HOFFMANN M, MULAOSMANOVIC H, et al. Hafnia-based double-layer ferroelectric tunnel junctions as artificial synapses for neuromorphic computing[J]. ACS Applied Electronic Materials, 2020, 2(12): 4023-4033. doi: 10.1021/acsaelm.0c00832
|
[15] |
WANG X, WU M, WEI F S, et al. Electroresistance of Pt/BaTiO3/LaNiO3 ferroelectric tunnel junctions and its dependence on BaTiO3 thickness[J]. Materials Research Express, 2019, 6(4): 046307. doi: 10.1088/2053-1591/aafae0
|
[16] |
WANG H, GUAN Z, LI J, et al. Silicon-compatible ferroelectric tunnel junctions with a SiO2/Hf0.5Zr0.5O2 composite barrier as low-voltage and ultra-high-speed memristors[J]. Advanced Materials, 2024, 36(15): 2211305. doi: 10.1002/adma.202211305
|
[17] |
BOYN S, GARCIA V, FUSIL S, et al. Engineering ferroelectric tunnel junctions through potential profile shaping[J]. APL Materials, 2015, 3(6): 061101. doi: 10.1063/1.4922769
|
[18] |
WEN Z, LI C, WU D, et al. Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semi-conductor tunnel junctions[J]. Nature Materials, 2013, 12(7): 617-621. doi: 10.1038/nmat3649
|
[19] |
LI X Q, LIU J Q, HUANG J Q, et al. Epitaxial strain enhanced ferroelectric polarization toward a giant tunneling electroresistance[J]. ACS Nano, 2024, 18(11): 7989-8001. doi: 10.1021/acsnano.3c10933
|
[20] |
WANG J, JU S, LI Z Y. The converse piezoelectric effect on electrontunnelling across a junction with a ferroelectric-ferromagnetic composite barrier[J]. Journal of Physics D: Applied Physics, 2010, 43(13): 135003. doi: 10.1088/0022-3727/43/13/135003
|
[21] |
LU X Y, CAO W W, JIANG W H, et al. Converse-piezoelectric effect on current-voltage characteristics of symmetric ferroelectric tunnel junctions[J]. Journal of Applied Physics, 2012, 111: 014103. doi: 10.1063/1.3673600
|
[22] |
SOKOLOV A, BAK O, LU H, et al. Effect of epitaxial strain on tunneling electroresistance in ferroelectric tunnel junctions[J]. Nanotechnology, 2015, 26(30): 305202. doi: 10.1088/0957-4484/26/30/305202
|
[23] |
WANG Z J, GUAN Z Y, SUN H Y, et al. High-speed nanoscale ferroelectric tunnel junction for multilevel memory and neural network computing[J]. ACS Applied Materials & Interfaces, 2022, 14(21): 24602-24609.
|
[24] |
RUAN J J, QIU X B, YUAN Z S, et al. Improved memory functions in multiferroic tunnel junctions with a dielectric/ferroelectric composite barrier[J]. Applied Physics Letters, 2015, 107(23): 232902. doi: 10.1063/1.4937390
|
[25] |
LV W M, LI C J, ZHENG L M, et al. Multi-nonvolatile state resistive switching arising from ferroelectricity and oxygen vacancy migration[J]. Advanced Materials, 2017, 29(24): 1606165. doi: 10.1002/adma.201606165
|
[26] |
DAMODARAN A R, PANDYA S, AGAR J C, et al. Three-state ferroelastic switching and large electromechanical responses in PbTiO3 thin films[J]. Advanced Materials, 2017, 29(37): 1702069. doi: 10.1002/adma.201702069
|
[27] |
LANGENBERG E, PAIK H, SMITH E H, et al. Strain-engineered ferroelastic structures in PbTiO3 films and their control by electric fields[J]. ACS Applied Materials & Interfaces, 2020, 12(18): 20691-20703.
|
[28] |
LU X Y, CHEN Z H, CAO Y, et al. Mechanical-force-induced non-local collective ferroelastic switching in epitaxial lead-titanate thin films[J]. Nature Communications, 2019, 10(1): 3951. doi: 10.1038/s41467-019-11825-2
|
[29] |
DONG Y Z, LU X Y, FAN J H, et al. Strain engineering of domain coexistence in epitaxial lead-titanite thin films[J]. Coatings, 2022, 12(4): 542. doi: 10.3390/coatings12040542
|
[30] |
LI F, CABRAL M J, XU B, et al. Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals[J]. Science, 2019, 364(6437): 264-268. doi: 10.1126/science.aaw2781
|
[31] |
WANG B, LI F, CHEN L Q. Inverse domain-size dependence of piezoelectricity in ferroelectric crystals[J]. Advanced Materials, 2021, 33(51): 2105071. doi: 10.1002/adma.202105071
|
[32] |
KOUKHAR V G, PERTSEV N A, WASER R. Thermodynamic theory of epitaxial ferroelectric thin films with dense domain structures[J]. Physical Review B, 2001, 64(21): 214103. doi: 10.1103/PhysRevB.64.214103
|
[33] |
SIMMONS J G. Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film[J]. Journal of Applied Physics, 1963, 34(6): 1793-1803. doi: 10.1063/1.1702682
|
[34] |
MEHTA R R, SILVERMAN B D, JACOBS J T. Depolarization fields in thin ferroelectric films[J]. Journal of Applied Physics, 1973, 44(8): 3379-3385. doi: 10.1063/1.1662770
|
[35] |
PERTSEV N A, ZEMBILGOTOV A G, TAGANTSEV A K. Effect of mechanical boundary conditions on phase diagrams of epitaxial ferroelectric thin films[J]. Physical Review Letters, 1998, 80(9): 1988-1991. doi: 10.1103/PhysRevLett.80.1988
|
[36] |
KUKHAR V G, PERTSEV N A, KOHLSTEDT H, et al. Polarization states of polydomain epitaxial Pb(Zr1-xTix)O3 thin films and their dielectric properties[J]. Physical Review B, 2006, 73(21): 214103. doi: 10.1103/PhysRevB.73.214103
|
[37] |
KIGHELMAN Z, DAMJANOVIC D, CANTONI M, et al. Properties of ferroelectric PbTiO3 thin films[J]. Journal of Applied Physics, 2002, 91(3): 1495-1501. doi: 10.1063/1.1431432
|
[38] |
BOYN S, GIROD S, GARCIA V, et al. High-performance ferroelectric memory based on fully patterned tunnel junctions[J]. Applied Physics Letters, 2014, 104(5): 052909. doi: 10.1063/1.4864100
|
[39] |
DONG Y Z, LU X Y. Multistep polarization switching and reduced coercive field in lead titanate thin films[J]. Physical Review B, 2024, 109(21): 214101. doi: 10.1103/PhysRevB.109.214101
|
[40] |
GERRA G, TAGANTSEV A K, SETTER N, et al. Ionic polarizability of conductive metal oxides and critical thickness for ferroelectricity in BaTiO3[J]. Physical Review Letters, 2006, 96(10): 107603. doi: 10.1103/PhysRevLett.96.107603
|
[41] |
WOO C H, ZHENG Y. Depolarization in modeling nano-scale ferroelectrics using the Landau free energy functional[J]. Applied Physics A, 2008, 91(1): 59-63. doi: 10.1007/s00339-007-4355-4
|