Citation: | WANG Guolin, WEN Jianjun, YUE Yanmei, LIU Jinxi. Singularities of Coupled Fields in Piezoelectric/Piezomagnetic Composite Wedges: an Antiplane Problem[J]. Applied Mathematics and Mechanics, 2024, 45(10): 1256-1267. doi: 10.21656/1000-0887.450244 |
[1] |
NAN C W, BICHURIN M I, DONG S X, et al. Multiferroic magnetoelectric composites: historical perspective, status, and future directions[J]. Journal of Applied Physics, 2008, 103(3): 031101. doi: 10.1063/1.2836410
|
[2] |
ZHAI J Y, XING Z P, DONG S X, et al. Magnetoelectric laminate composites: an overview[J]. Journal of the American Ceramic Society, 2008, 91(2): 351-358. doi: 10.1111/j.1551-2916.2008.02259.x
|
[3] |
SRINIVASAN G. Magnetoelectric composites[J]. Annual Review of Materials Research, 2010, 40: 153-178. doi: 10.1146/annurev-matsci-070909-104459
|
[4] |
WANG Y J, LI J F, VIEHLAND D. Magnetoelectrics for magnetic sensor applications: status, challenges and perspectives[J]. Materials Today, 2014, 17(6): 269-275. doi: 10.1016/j.mattod.2014.05.004
|
[5] |
LEUNG C M, LI J F, VIEHLAND D, et al. A review on applications of magnetoelectric composites: from heterostructural uncooled magnetic sensors, energy harvesters to highly efficient power converters[J]. Journal of Physics D: Applied Physics, 2018, 51(26): 263002. doi: 10.1088/1361-6463/aac60b
|
[6] |
CHU Z Q, POURHOSSEINIASL M J, DONG S X. Review of multi-layered magnetoelectric composite materials and devices applications[J]. Journal of Physics D: Applied Physics, 2018, 51(24): 243001. doi: 10.1088/1361-6463/aac29b
|
[7] |
LIANG X F, MATYUSHOV A, HAYES P, et al. Roadmap on magnetoelectric materials and devices[J]. IEEE Transactions on Magnetics, 2021, 57(8): 1-57.
|
[8] |
PAN E, HEYLIGER P R. Free vibrations of simply supported and multilayered magneto-electro-elastic plates[J]. Journal of Sound and Vibration, 2002, 252(3): 429-442. doi: 10.1006/jsvi.2001.3693
|
[9] |
BHANGALE R K, GANESAN N. Free vibration of simply supported functionally graded and layered magneto-electro-elastic plates by finite element method[J]. Journal of Sound and Vibration, 2006, 294(4/5): 1016-1038.
|
[10] |
YANG Z X, DANG P F, HAN Q K, et al. Natural characteristics analysis of magneto-electro-elastic multilayered plate using analytical and finite element method[J]. Composite Structures, 2018, 185: 411-420. doi: 10.1016/j.compstruct.2017.11.031
|
[11] |
NGAK F P E, NTAMACK G E, AZRAR L. Dynamic and static behaviors of multilayered angle-ply magnetoelectroelastic laminates with viscoelastic interfaces[J]. Composite Structures, 2018, 189: 667-687. doi: 10.1016/j.compstruct.2018.01.083
|
[12] |
KUO H Y, WEI K H. Free vibration of multiferroic laminated composites with interface imperfections[J]. Acta Mechanica, 2022, 233(9): 3699-3717. doi: 10.1007/s00707-022-03292-6
|
[13] |
CHEN J Y, PAN E, CHEN H L. Wave propagation in magneto-electro-elastic multilayered plates[J]. International Journal of Solids and Structures, 2007, 44(3/4): 1073-1085.
|
[14] |
杜建科, 金小英, 王骥. 电磁弹性层状结构中的Love波传播[J]. 中国科学(G辑): 物理学力学天文学, 2007, 37(6): 789-803.
DU Jianke, JIN Xiaoying, WANG Ji. Love wave propagation in electromagnetic elastic layered structure[J]. Science in China (Series G): Physics, Mechanics & Astronomy, 2007, 37(6): 789-803. (in Chinese)
|
[15] |
ZHOU Y Y, LÜ C F, CHEN W Q. Bulk wave propagation in layered piezomagnetic/piezoelectric plates with initial stresses or interface imperfections[J]. Composite Structures, 2012, 94(9): 2736-2745. doi: 10.1016/j.compstruct.2012.04.006
|
[16] |
MATAR O B, GASMI N, ZHOU H, et al. Legendre and Laguerre polynomial approach for modeling of wave propagation in layered magneto-electro-elastic media[J]. The Journal of the Acoustical Society of America, 2013, 133(3): 1415-1424. doi: 10.1121/1.4776198
|
[17] |
EZZIN H, AMOR M B, GHOZLEN M H B. Propagation behavior of SH waves in layered piezoelectric/piezomagnetic plates[J]. Acta Mechanica, 2017, 228: 1071-1081. doi: 10.1007/s00707-016-1744-9
|
[18] |
KUO H Y, WANG Y H. Wave motion of magneto-electro-elastic laminated plates with membrane-type interfacial imperfections[J]. Composite Structures, 2022, 293: 115661. doi: 10.1016/j.compstruct.2022.115661
|
[19] |
张培伟, 周振功, 王彪. 不同功能梯度压电压磁层状介质中共线界面裂纹的动态性能分析[J]. 应用数学和力学, 2007, 28(5): 551-560. doi: 10.3321/j.issn:1000-0887.2007.05.007
ZHANG Peiwei, ZHOU Zhengong, WANG Biao. Dynamic behavior of two collinear interface cracks between two dissimilar functionally graded piezoelectric/piezomagnetic material strips[J]. Applied Mathematics and Mechanics, 2007, 28(5): 551-560. (in Chinese) doi: 10.3321/j.issn:1000-0887.2007.05.007
|
[20] |
WANG B L, HAN J C, DU S Y. Transient fracture of a layered magnetoelectroelastic medium[J]. Mechanics of Materials, 2010, 42(3): 354-364. doi: 10.1016/j.mechmat.2009.12.002
|
[21] |
HERRMANN K P, LOBODA V V, KHODANEN T V. An interface crack with contact zones in a piezoelectric/piezomagnetic bimaterial[J]. Archive of Applied Mechanics, 2010, 80: 651-670. doi: 10.1007/s00419-009-0330-1
|
[22] |
WAN Y P, YUE Y P, ZHONG Z. Multilayered piezomagnetic/piezoelectric composite with periodic interface cracks under magnetic or electric field[J]. Engineering Fracture Mechanics, 2012, 84: 132-145. doi: 10.1016/j.engfracmech.2012.02.002
|
[23] |
GOVORUKHA V, KAMLAH M, LOBODA V, et al. Interface cracks in piezoelectric materials[J]. Smart Materials and Structures, 2016, 25(2): 023001. doi: 10.1088/0964-1726/25/2/023001
|
[24] |
赵星. 压电-压磁夹层结构界面裂纹的断裂行为[D]. 南京: 南京航空航天大学, 2020.
ZHAO Xing. Fracture behavior of interface cracks in piezoelectric-piezomagnetic sandwich structure[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020. (in Chinese)
|
[25] |
延真. 基于扩展有限单元法的压电-压磁双层结构界面裂纹断裂研究[D]. 石家庄: 石家庄铁道大学, 2021.
YAN Zhen. Fracture analysis of interfacial cracks in piezoelectric-piezomagnetic bi-layered structures by the extended finite element method[D]. Shijiazhuang: Shijiazhuang Tiedao University, 2021. (in Chinese)
|
[26] |
SAVRUK M P, KAZBERUK A. Stress concentration near sharp and rounded V-notches in orthotropic and quasi-orthotropic bodies[J]. Theoretical and Applied Fracture Mechanics, 2016, 84: 166-176. doi: 10.1016/j.tafmec.2016.02.006
|
[27] |
PENADO F E. Analysis ofbimaterial singular regions for orthotropic and isotropic materials under thermal loading[J]. Engineering Fracture Mechanics, 2021, 243: 107527. doi: 10.1016/j.engfracmech.2021.107527
|
[28] |
SHIN K C, KIM W S, LEE J J. Application of stress intensity to design of anisotropic/isotropic bi-materials with a wedge[J]. International Journal of Solids and Structures, 2007, 44(24): 7748-7766. doi: 10.1016/j.ijsolstr.2007.05.014
|
[29] |
LIU T J C, CHUE C H. On the singularities in abimaterial magneto-electro-elastic composite wedge under antiplane deformation[J]. Composite Structures, 2006, 72(2): 254-265. doi: 10.1016/j.compstruct.2004.11.009
|
[30] |
SUE W C, LIOU J Y, SUNG J C. Investigation of the stress singularity of a magnetoelectroelastic bonded antiplane wedge[J]. Applied Mathematical Modelling, 2007, 31(10): 2313-2331. doi: 10.1016/j.apm.2006.09.003
|
[31] |
LIU T J C. The singularity problem of the magneto-electro-elastic wedge-junction structure with consideration of the air effect[J]. Archive of Applied Mechanics, 2009, 79(5): 377-393. doi: 10.1007/s00419-008-0240-7
|
[32] |
ZHOU Z H, XU X S, LEUNG A Y T. Hamiltonian analysis of a magnetoelectroelastic notch in a mode Ⅲ singularity[J]. Smart Materials and Structures, 2013, 22(9): 095018. doi: 10.1088/0964-1726/22/9/095018
|
[33] |
程长征, 丁昊, 王大鹏, 等. 磁电弹材料反平面切口奇性数值分析[J]. 中国科学: 物理学力学天文学, 2014, 44(1): 91-99.
CHENG Changzheng, DING Hao, WANG Dapeng, et al. Numerical analysis of the singularities for a magneto-electroelastic notch under anti-plane deformation[J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2014, 44(1): 91-99. (in Chinese)
|
[34] |
YANG Y Y, CHENG C Z, YAO S L, et al. Singularity analysis for the V-notch in functionally graded piezoelectric/piezomagnetic material[J]. Journal of Engineering Mathematics, 2021, 132(1): 17.
|
[35] |
CHEN C D, CHUE C H. Singular electro-mechanical fields near the apex of a piezoelectric bonded wedge under antiplane shear[J]. International Journal of Solids and Structures, 2003, 40(23): 6513-6526. doi: 10.1016/S0020-7683(03)00415-3
|
[36] |
ALSHITS V I, DARINSKII A N, LOTHE J. On the existence of surface waves in half-infinite anisotropic elastic media with piezoelectric andpiezomagnetic properties[J]. Wave Motion, 1992, 16(3): 265-283. doi: 10.1016/0165-2125(92)90033-X
|
[37] |
NAN C W, CAI N, SHI Z, et al. Large magnetoelectric response in multiferroic polymer-based composites[J]. Physical Review B: Condensed Matter and Materials Physics, 2005, 71: 014102. doi: 10.1103/PhysRevB.71.014102
|
[38] |
KUO H Y, SLINGER A, BHATTACHARYA K. Optimization of magnetoelectricity in piezoelectric-magnetostrictive bilayers[J]. Smart Materials and Structures, 2010, 19(12): 125010. doi: 10.1088/0964-1726/19/12/125010
|
[39] |
PATIL D R, CHAI Y, JEON B G, et al. Theoretical prediction of resonant and off-resonant magnetoelectric coupling in layered composites with anisotropic piezoelectric properties[J]. Composite Structures, 2017, 159: 498-504. doi: 10.1016/j.compstruct.2016.09.053
|
[40] |
WANG H L, LIU B. The theoretical ultimate magnetoelectric coefficients of magnetoelectric composites by optimization design[J]. Journal of Applied Physics, 2014, 115(11): 114904. doi: 10.1063/1.4868516
|
[41] |
LEUNG C M, ZHUANG X, XU J, et al. Importance of composite parameters in enhanced power conversion efficiency of Terfenol-D/PZT magnetoelectric gyrators[J]. Applied Physics Letters, 2017, 110(11): 112904. doi: 10.1063/1.4978751
|
[42] |
CHUE C H, CHEN C D. Antiplane stress singularities in a bonded bimaterial piezoelectric wedge[J]. Archive of Applied Mechanics, 2003, 72(9): 673-685. doi: 10.1007/s00419-002-0241-x
|
[43] |
RAMIREZ F, HEYLIGER P R, PAN E. Free vibration response of two-dimensional magneto-electro-elastic laminated plates[J]. Journal of Sound and Vibration, 2006, 292(3/4/5): 626-644.
|
[44] |
JIANG S N, JIANG Q, LI X F, et al. Piezoelectromagnetic waves in a ceramic plate between two ceramic half-spaces[J]. International Journal of Solids and Structures, 2006, 43(18/19): 5799-5810.
|
[45] |
JARNG S S. Magnetostrictive Terfenol-D material linear simulation using finite element method[J]. International Journal of Applied Electromagnetics and Mechanics, 2006, 24(3/4): 187-193.
|